

Translational Development of Rimeporide, a Sodium-Hydrogen Exchanger (NHE-1) Inhibitor, for Patients with Duchenne Muscular Dystrophy

F. Porte-Thomé¹, J.B. Su², I. Barthelemy³, N.Blanchard Gutton³, C. Laveille⁴, G. Bkaily⁵, Q. Yu⁶, K. Nagaraju⁶, B. Ghaleh², S. Blot³

¹EspeRare Foundation, Geneva, Switzerland (porte.florence@esperare.org); ²INSERM, Unité 955, Equipe 3, Créteil France; ³Ecole Nationale Vétérinaire d'Alfort Laboratoire de Neurobiologie Maisons-Alfort France & IMRB, INSERM, Unité 955, Equipe 10, Créteil France; ⁴Calvagone, France, ⁵University of Medicine, Sherbrooke, Canada, ⁶Children's National Medical Center, Washington DC, USA.

Background and rationale

Background of NHE-1 inhibition in DMD

- [Na⁺]_i serves as a co-regulator of Ca²⁺ influx through the NCX and NHE-1, (*Burr et al, 2015*)
- [Na⁺]; overload was observed in DMD patients (Weber at al, 2012), is responsible for edema and a secondary increase in basal Ca²⁺ levels leading to myofiber necrosis and muscles degeneration (Burr et al, 2015)
- NHE-1 inhibitors reduce [Na+], & indirectly [Ca2+], (Iwata et al, 2007; Dorchies et al, 2015), reduce myocardial necrosis (Chahine et al, 2005), myofiber fibrosis (Nagaraju et al, 2015), inflammation (Yang et al 2013) and prevent early death (Bkaily et al, 2015) in CM hamsters.

Fibrosis and Inflammation in mdx mice

Significant reduction of fibrosis in the heart (above, -29%) & in diaphragm (-19%), in mdx mice after a 9 M treatment)

Significant reduction in inflammation in a large panel of skeletal muscles (forelimb & hindlimb) & diaphragm (-38%)

Cardioprotection in CMH Hamsters

Decreased heart necrosis, thrombosis, myolysis

Prevention of early death in cardiomyopathic hamsters

Phase II/III prerequisites

GLP Toxicology studies

Extensive Toxicology package did show that Rimeporide was safe

- Repeated oral toxicity studies up to 26-week in rats and up to 39-week in dogs showed the main target organ in both species to be fundic parietal cells (reversible mild parietal cells alteration)
- No mutagenic activity nor teratogenic potential were shown
- No impairment of male and female fertility
- No skin sensitising properties
- No effect on cardiovascular hemodynamic parameters, no evidence of risk for any pro-arrhythmic effects
- No relevant effects on the central and peripheral nervous system, nor on the gastro-intestinal, renal and respiratory system

Translational GRMD Dogs studies

- 20 animals (8 severe & 12 moderate)
- Blinded treatment with Rimeporide at 20 mg/kg/d or placebo started from 2 to 12 months
- Objectives:
 - Contribute to the design of the clinical study by guiding dose selection, identifying novel non invasive biomarkers as well as cardiac outcome measures.

Rimeporide Clinical trial status update

A complete safety & PK in healthy adults and congestive heart failure patients

Clinical pharmacology studies in over 166 healthy and CHF patients:

- Single oral and IV administration
- Multiple oral doses administration
- Food interaction

PK profile in Adults

- Drug Drug Interaction with Digoxin
- Safety, tolerability, PK in CHF patients with renal insufficiency
- Adverse events were mild in intensity with no clear dose dependency

— mean 50 mg day1

— mean 100mg day 1

- headache (\approx 15%), dizziness (\approx 5%), chest discomfort (\approx 10%), paresthesias, vaso-vagal attacks, local skin reactions. No clinically relevant changes in vital signs, ECGs, Laboratory.
- Similar events reported on Placebo and treated patients

Ongoing Clinical development in patients with DMD (6 to 14 y)

- Primary objective: Determine safety & tolerability of Rimeporide after 4 weeks oral treatment
- **Secondary objective:** Evaluate the PK profile of rimeporide in plasma
- **Exploratory objectives:** NMRI indices (T2, Muscle Mass, FF) & Serum Biomarkers

Cohort 1 PK results

In cohort 1:

- 5 ambulant DMD patients aged 6 to 10 y, enrolled in France, received oral rimeporide for 4 W
- No treatment-related adverse events, no significant modification of safety lab & tolerability issues
- In cohort 2: 5 patients (6-10 y) in Italy, Spain & UK completed, safety analysis ongoing
- PK: Visual Predictive Check shows that the adult model, incorporating allometric scaling, adequately reflects the PK in children

ODD

2000

1500

1000

2015

Scientific Advice

Biomarkers strategy

2017

Launch of pivotal study(ies)

2021 **NDA** approval

Preclinical PoC

Phase Ib in DMD patients

Phase II/III preparation

